Old and New Identities for Bernoulli Polynomials via Fourier Series
نویسندگان
چکیده
The Bernoulli polynomials Bk restricted to 0, 1 and extended by periodicity have nth sine and cosine Fourier coefficients of the formCk/n . In general, the Fourier coefficients of any polynomial restricted to 0, 1 are linear combinations of terms of the form 1/n . If we can make this linear combination explicit for a specific family of polynomials, then by uniqueness of Fourier series, we get a relation between the given family and the Bernoulli polynomials. Using this idea, we give new and simpler proofs of some known identities involving Bernoulli, Euler, and Legendre polynomials. The method can also be applied to certain families of Gegenbauer polynomials. As a result, we obtain new identities for Bernoulli polynomials and Bernoulli numbers.
منابع مشابه
The Möbius inversion formula for Fourier series applied to Bernoulli and Euler polynomials
Hurwitz found the Fourier expansion of the Bernoulli polynomials over a century ago. In general, Fourier analysis can be fruitfully employed to obtain properties of the Bernoulli polynomials and related functions in a simple manner. In addition, applying the technique of Möbius inversion from analytic number theory to Fourier expansions, we derive identities involving Bernoulli polynomials, Ber...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملOn composition of generating functions
In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...
متن کاملDerivation of identities involving some special polynomials and numbers via generating functions with applications
The current article focus on the ordinary Bernoulli, Euler and Genocchi numbers and polynomials. It introduces a new approach to obtain identities involving these special polynomials and numbers via generating functions. As an application of the new approach, an easy proof for the main result in [6] is given. Relationships between the Genocchi and the Bernoulli polynomials and numbers are obtai...
متن کاملFourier series of higher-order Bernoulli functions and their applications
In this paper, we study the Fourier series related to higher-order Bernoulli functions and give new identities for higher-order Bernoulli functions which are derived from the Fourier series of them.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012